This course is a case-based simulation of the types of cancer-related consultations frequently fielded by neurologists. The first hour includes detailed discussions of cases representing 1) medical management problems arising during the course of cancer treatment; 2) cutaneous manifestations of neuro-oncologic problems and new treatment strategies for these; 3) diagnostic problems in which the diagnosis of cancer such as CNS lymphoma is not yet certain; 4) how to proceed when the nature of a recurrent MRI abnormality requires clarification with advanced imaging or other modality.

The second hour will use cases to demonstrate examples of infectious complications of tumor therapy, hematopoietic cell transplant-associated problems, complications of new immune checkpoint inhibitors, and emerging strategies for common systemic cancers.

The mock tumor board format uses the Audience Response System. The three faculty will offer opinions and solicit audience input. This syllabus provides participants with clinical questions and background references to participate in the consultations. (To retain an element of realistic diagnostic challenge, problems are not arranged in chronologic order.) This material complements case-based discussions in the second part of this course.

Learning Objectives: Participants should understand the evidence base for treatment of common cancer-related problems such as stroke and seizure and consider the rapidly evolving spectrum of immune therapy-related complications. They will also recognize less common radiographic and dermatologic clues to efficiently diagnose neurological problems that impact survival and quality of life.

This is a rapidly changing field as indicated by the next slide!
I. Medical Management of Patients with Brain Tumors

Common problems arising during active tumor treatment are related to vasogenic edema, seizures, and coagulopathy. Steroid complications are summarized here:

Complications of Corticosteroids

<table>
<thead>
<tr>
<th>Common</th>
<th>Uncommon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myopathy</td>
<td>Psychosis/hallucinations</td>
</tr>
<tr>
<td>Weight gain/edema</td>
<td>Hiccups</td>
</tr>
<tr>
<td>Behavioral changes</td>
<td>Dementia</td>
</tr>
<tr>
<td>Insomnia</td>
<td>Seizures</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Epidural lipomatosis</td>
</tr>
<tr>
<td>Tremor</td>
<td>Avascular necrosis hips</td>
</tr>
<tr>
<td>Visual blurring</td>
<td>Allergy suppression</td>
</tr>
<tr>
<td>Reduced taste and olfaction</td>
<td>RPLS/PRES??</td>
</tr>
<tr>
<td>Cerebral atrophy</td>
<td>GASTRIC irritation</td>
</tr>
<tr>
<td>Osteoporosis-kyphoplasty/vertebroplasty</td>
<td>INFECTIONS (pjp)</td>
</tr>
<tr>
<td></td>
<td>DEPENDENCE</td>
</tr>
</tbody>
</table>

A complicated differential diagnosis arises when a cancer patient has a sudden new focal deficit as the differential diagnosis of stroke in a cancer patient is different from that of noncancer patients and must include tumor and infection-related issues. The table below indicates a broad differential of this problem.
Ischemic Stroke
Coagulopathy
 Nonbacterial thrombotic endocarditis
 Disseminated intravascular coagulation*
 Hyperviscosity
Paradoxical embolus (lung tumors, venous thromboembolism*)
Venous sinus thrombosis (dehydration, tumor invasion)
Infection
 Varicella-zoster virus vasculopathy
 Bacterial or fungal endocarditis
 Fungal vascular invasion (eg, Mucor, Aspergillus)
Neoplasms
 Intravascular lymphoma
 Vascular compression or invasion (dural, leptomeningeal, parasellar)
 Tumor emboli (myxoma, lung tumors)
Radiation-induced vasculopathy
 Carotid stenosis after neck radiation
 Small vessel (lacunar) disease*
 Moyamoya disease
 Angitis
Chemotherapy and targeted molecular agents
 L-Asparaginase
 Bevacizumab and other VEGF or VEGF receptor inhibitors*
 Thalidomide
 Estrogens
 Tamoxifen

Hemorrhagic Stroke
Coagulopathy
Thrombocytopenia
Disseminated intravascular coagulation*
Abnormal platelets
VEGF and VEGF receptor inhibitors*
Hemorrhage into tumor (melanoma, germ cell, thyroid, renal)*
Infectious aneurysm
Therapeutic anticoagulation*
Head trauma (subdural, subarachnoid)

*VEGF = vascular endothelial growth factor.
* Particularly relevant to patients with primary or secondary brain tumors.
Anticoagulation in cancer patients, whether for secondary stroke prophylaxis or for the more common situation of venous thromboembolism (VTE), can involve low-molecular weight heparinoids or warfarin, whereas use of new oral anticoagulants is not well-established in this patient population. The algorithm below represents one possible approach VTE, a life-threatening complication:

II Neurocutaneous signs of relevance to neuro-oncology:

Skin findings are a rare but important aspect of the evaluation and management of patients with tumors of the nervous system with the highest prevalence in genetic tumor syndromes including NF1, NF2, and tuberous sclerosis. Since there are now specific targeted therapies for many of these conditions, recognition of the skin clues is essential. The skin may also manifest findings in paraneoplastic syndromes (pemphigus, dermatomyositis, neuropathic itch, brachioradial pruritus) and treatment complications (anti-epileptic drugs and Stevens-Johnson syndrome, scalp involvement from vemurafenib), and can be a valuable biopsy source for some neoplasms (intravascular lymphoma) and some infections (Aspergillus, Cryptococcus, Varicella zoster),
III Tumor or Not? Diverse manifestations of lymphoma

(Another) Great Imitator

CNS Lymphomas

“Typical” PCNSL steroid responsive (sometimes) mass(es)
Variants: dural, leptomeningeal, spinal cord- LETM*, intravascular*, ocular, neurolymphomatosis, CLIPPERS—expanding spectrum antecedent demyelinating or inflammatory lesion
CNS involvement in systemic lymphoma
Direct
Paraneoplastic
PCNSL in immunocompromised:
 AIDS
 Transplant recipients

* May have systemic symptoms (fever, sweats, weight loss)
There are few randomized controlled clinical trials on this subject.
10 years of international consortium AAAs strength of evidence guidelines will be respected.

CT/MRI suspicious for PCNSL

Withhold corticosteroids
Chem unwrap CT, chest, abdomen, pelvis, puncture ultrasound/PET-CT
Serum: CBC, HIV, LDH, SFEP

S1 and lumbar puncture with cytology and flow cytometry
IgG PCR, EBV pcR*

- Cells in CSF
 - Viral encephalitis
 - Malignant cells in CSF
 - Brain biopsy

- Lymphoma
 - Oligoclonal bands

Brain biopsy

Lumbar puncture

Brain biopsy

Diagnosis—
appropriate
therapy

CT/MRI suspicious for PCNSL

Serum function tests
 Creatinine clearance
 Spinal fluid
 Assess cognitive function (MMSE)

Definitive treatment of PCNSL

*If EBV + or immunosuppressed (transplant)
IV Tumor or Not? Neurologic consultants are often the “gatekeepers”, trying to arrive at a diagnosis before calling a neurosurgeon for a biopsy. They can use advanced imaging techniques but also new biomarkers in CSF to arrive at sometimes elusive diagnoses such as CNS lymphoma or to distinguish tumor recurrence from treatment-related pseudopropgression or pseudo-regression.

Slide courtesy of Dr. Joshua Klein

Tumor Board

A frequent neurologic consultation involves advice about choice of anti-epileptic drugs (AEDs). The following table emphasizes the large number of cytotoxic and targeted therapies that are negatively impacted by enzyme-inducing AEDs.

Chemotherapy agents negatively affected by concomitant use of EIAEDs

- **Corticosteroids**—bidirectional
- **Alkylating Agents**: carmustine, lomustine, nimustine, fotemustine, thiotepa, cyclophosphamide, ifosfamide

 NOTE: NOT tomotuzolamide
- **Mitotic Inhibitors**: vincristine, vinorelbine, paclitaxel, docetaxel
- **Topoisomerase Inhibitors**: irinotecan, topotecan, etoposide, doxorubicin
- **Antimetabolites**: methotrexate, pemetrexed
- **Signal Transduction Inhibitors**: imatinib, gefitinib, lapatinib, erlotinib, sorafenib, sunitinib, crizotinib, everolimus, vemurafenib, temozolomide, entasolin
- **Proteasome Inhibitors**: bortezomib

Late recurrence of paroxysmal seizure-like episodes may not always represent seizures. We will discuss other paroxysmal events including SMART/ALERT syndromes.

Complications of new therapies:

The rapid development of effective therapies for many previously poorly treatable systemic neoplasms includes an array of new syndromes as complications of these promising modalities. Patients with cerebral metastases from non-small cell lung cancer, melanoma and non-Hodgkin lymphoma are now achieving durable remissions with PD1 and PDL1 inhibitors and trials of immune checkpoint inhibitors are underway for primary brain tumors as well as for progressive multifocal leukoencephalopathy. Among the recognized complications of these agents are:

PD1 and PDL1 inhibitors: pembrolizumab and nivolumab

- Anti-PD1 antibodies approved for melanoma, renal cell carcinoma, Hodgkin’s lymphoma, NSCLC; clinical trials in other advanced solid tumors (GBM), atypical meningiomas, PML
- Adverse effects:
 PRES
 Demyelinating lesions — are they contraindicated in MS patients?
 AIDP/CIDP, acute axonal neuropathy: our 2 patients, one GBS, one painful axonal neuropathy: IVIG
 Hypophysitis
 Myasthenie gravis
 Enteric neuropathy
 Transverse myelitis
 Pseudoprogression of both primary and metastatic brain tumors
 Autoimmune encephalitis*

The Posterior Fossa: Urgent Syndromes to Recognize

When an oncology patient presents with posterior fossa signs and symptoms, not only is the situation often urgent but it also may be specifically circumscribed in its diagnostic possibilities. Thus recognition of the often treatable syndromes that are tropic to this region is essential. Posterior fossa signs may be the presenting sign of bacterial infection (Listeria rhombencephalitis, invasive fungal infections), can one of the more unusual localizations of posterior reversible encephalopathy syndrome (PRES) due to many agents (bevacizumab, sunitinib, and many others), unusual osmotic demyelination syndromes, CLIPPERS, Erdheim-Chester, akinetic mutism postoperatively or due to treatment complications (tacrolimus), and progressive multifocal leukoencephalopathy (PML). We will pay special attention to the multiple situations in which PML needs to be considered, including late survivors of hematopoietic cell transplantation and recipients of alkylating therapy, and we will address new approaches to treatment.

Reference List

- Blakeley JO, Plotkin SR. Therapeutic advances for the tumors associated with neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Neuro Oncol 2016;18:264-36

• Lee EQ. Nervous system metastases from systemic cancer. Continuum 2015;21(2): 415-428

• Short NJ, Connors JM. New oral anticoagulants and the cancer patient. The Oncologist 2014;19:82-93.
